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ABSTRACT  
Spraying water droplets on air fin surfaces is often used to 

augment performance of air-cooled Rankine power plant 
condensers and wet cooling tower heat exchangers for building 
air-conditioning systems. To get the best performance in such 
processes, the water droplets delivered to the surface should 
spread rapidly into an extensive, thin film and evaporate with 
no liquid leaving the surface due to recoil or splashing. This 
paper presents predictions of theoretical/computational 
modeling and results of experimental studies of droplet 
spreading on thin-layer, nanostructured, superhydrophilic 
surfaces that exhibit very high wicking rates (wickability) in the 
porous layer. Analysis of the experimental data in the model 
framework illuminates the key aspects of the physics of the 
droplet spreading process and evaporation heat transfer.  This 
analysis also predicts the dependence of droplet spreading 
characteristics on the nanoporous surface morphology and other 
system parameters.  The combined results of this investigation 
indicate specific key strategies for design and fabrication of 
surface coatings that will maximize the heat transfer 
performance for droplet evaporation on heat exchanger 
surfaces. The implications regarding wickability effects on pool 
boiling processes are also discussed. 

NOMENCLATURE 
b =  nanostructured layer height   
r  =  radial distance from center of droplet 
rd = upper droplet radius 
rnl = mean interface radius of liquid-vapor interface in  
        nanostructured layer   
Pa  = ambient atmospheric pressure 
Pd  = pressure inside upper droplet  
ΔPcap  = nanolayer capillary pressure difference  
ε  = porosity 
κ  = permeability  

φs  = solid fraction at top surface of nanostructured layer 
θapp = apparent contact angle 
θE = intrinsic contact angle 

 
INTRODUCTION 

Numerous recent investigations have examined the use of 
nanostructured surfaces to enhance features of water boiling or 
liquid water evaporation processes.  Since prior research has 
shown that increasing surface wetting by the liquid generally 
improves boiling performance, it is not surprising that use of 
nanostructured hydrophilic surfaces has frequently been 
proposed as a means of enhancing nucleate boiling heat transfer 
and critical heat flux for pool boiling [1-16], suppressing wall 
dryout in flow boiling [17], and enhancing droplet spread and 
evaporation heat transfer in water spray cooling [18,19].  The 
use of superhydrophilic nanostructured surfaces would appear 
to offer the promise that substantial enhancement of water pool 
boiling and liquid evaporation processes, since 
superhydrophilic surface structures of this type have been 
found to exhibit rapid spreading of liquid over an initially dry 
surface [7,8,18].  Recent studies [18,19] have shown, for 
example, that surfaces of this type can quickly transition a 
millimeter-sized droplet to a liquid film on the surface only 
about 100 µm thick.  The subsequent rapid transfer of heat form 
the surface across the film to the interface, results in rapid 
evaporation and a very high heat transfer coefficient over the 
footprint of the droplet. 

Recent studies by Rahman, et al. [7] and Kim, et al [8] 
have used a wickability parameter to quantify the tendency for 
superhydrophilic micro- or nano-structured surfaces to exhibit 
rapid spreading of liquid over an initially dry surface.  Rahman, 
et al. [7] proposed a simple way of measuring an appropriately 
defined wickability for micro and nano structured surfaces.  
The results of these investigations [7,8] indicate that 
augmentation of critical heat flux in boiling processes 
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correlates with the magnitude of the wicking parameter for a 
variety of micro and nano structured surface morphologies. 

The prior work described above has demonstrated that use 
of hydrophilic, strongly-wicking, nanostructured surfaces can 
enhance water vaporization heat transfer processes.  However, 
this raises the question: how should nanostructured surfaces be 
designed to maximize the benefits of a high wickablity surface 
layer?  In the study summarized here, we explored this question 
using a droplet spreading model developed in tandem with our 
experimental studies of droplet spreading on nanostructured 
surfaces. The model is used here as a means to predict how 
changes in the morphology of the nanoporous layer affect the 
spreading mechanisms and heat transfer process during water 
droplet evaporation.  

As will be discussed below, the model used here was 
specifically developed for droplet spreading in ultra-thin 
nanostructured layers on metal substrates that generate high 
capillary forces and exhibit low to moderate permeability.  In 
this regard, this investigation differs from earlier studies that 
have considered liquid spreading on deep porous layers or 
larger microstructured surface morphologies (e.g., 
[7,20,21,22]).  In addition, we specifically focused on non-
ordered, nanostructured surfaces that can be thermally grown 
on metal substrates because this type of process is scalable and 
adaptable to complex substrates, making it an ideal approach to 
putting nanostructured, superhydrophilic coatings on heat 
exchanger surfaces.   

In the next two sections, the theoretical framework of the 
droplet spreading model is described and its predictions are 
compared with experimental observations and data.  The 
discussion in those sections demonstrates the connection 
between the nanoporous layer morphology and the speed and 
extent of liquid spreading, which strongly impact evaporation 
heat transfer. A subsequent section of this paper explores the 
predicted parametric effects of nanostructure morphology 
changes on wickability, spreading, and associated phase-change 
heat transfer processes.   

MODEL FORMULATION 
Previous studies have developed models for spreading of 

droplets on flat solid surfaces [23] and on the surface of a thick 
porous medium [22,24-26].  Here we are specifically interested 
in low Weber number deposition and spreading of a droplet on 
a specific category of ultrathin, nanostructured, 
superhydrophilic layers on a metal substrate which exhibits the 
following key features that cause the spreading to differ from 
droplet spreading on either a solid flat surface or a thick porous 
medium:  
 
(1) The nanostructure has large capillary pressure difference 
across the interface at the ultra small pores of the structure. 
(2) The thickness of the nanostructured layer is very small, and 
therefore transport across the structure is very fast compared to 
radial transport of liquid. 

(3) The superhydrophilic nature of these surfaces make hemi- 
spreading [27] possible (hemi-spreading being a phenomenon 
in which the leading edge of liquid infusion into the porous 
nanostructure separates and proceeds beyond the contact line of 
the upper droplet). 

The nanostructure surface features listed above are of central 
interest here because they were characteristics observed 
experimentally for superhydrophilic ZnO nanostructured 
surfaces studied by Ruiz , et al. [17] and Padilla and Carey [18], 
and they are expected to be representative of the behavior for 
other similar superhydrophilic nanostructured surfaces.  
Previous studies of droplet spread on surfaces mentioned above 
have not considered this specific type of surface (e.g., 
[7,20,21,22]).   
 
Early Time Synchronous Spreading Process 
Figure 1a depicts the initial contact of a droplet deposited on a 
thin nanostructured surface at time t = 0.  Because the layer is 
thin, the time required for the liquid to wick across the thin 
nanoporous layer t p  is very small (see Fig. 1b).  Liquid then 
wicks radially outward (Fig. 1c) in the nanostructured layer 
while the droplet above spreads radially.  During this first stage 
of the spreading process, the droplet contact line is postulated 
to stay within the leading edge of the nanoporous layer filled 
with liquid.  This postulated synchronized spreading of the 
upper droplet and the liquid wicking in the porous layer appears 
justifiable for two reasons: 

   (1) Transfer of the contact line to a higher contact angle dry 
region would force the interface to at least temporarily become 
more convex near the contact line, which is expected to 
increase the pressure in the liquid there (due to capillary effects 
across the interface), moving liquid away from that location 
and thus slowing the spread. 

   (2) Observation of experiments for these conditions indicates 
that the contact line does tend to stay within the liquid filled 
portion of the nanoporous layer for conditions of interest here. 
 
As indicated in Figures 1d and 1e, spreading of the liquid 
droplet continues until the contact angle and interface radius of 
curvature of the droplet adjusts to be consistent with the total 
volume of liquid in the droplet and to minimize the free energy 
of the system.  The surface under the droplet is effectively a 
composite surface comprised of solid fraction φs , wetted at 
intrinsic contact angle θE , and liquid regions (fraction 1-φs ), 
effectively wetted at zero contact angle. The Cassie-Baxter [28] 
composite surface wetting model suggests that the resulting 
equilibrium apparent contact angle θapp  is given by 

 cosθapp = φs cosθE − (1−φs )   (1) 
Since departure from this equilibrium increases system free 
energy, it is expected that the droplet resists leaving that state 
one it has achieved it. The model analysis developed here 
adopts the hypothesis that in the synchronous stage of droplet 
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spreading, the upper droplet responds as if it is spreading on a 
composite surface, a mosaic of dry solid surface and fully-
wetted liquid surface.  The upper droplet stops expanding when 
it reaches the footprint radius Rs  that corresponds to a spherical 
cap having the volume of the original deposited droplet and the 
apparent contact angle θapp  for the composite liquid and solid 

surface.  For a droplet with initial volume Vd 0 , the spherical 

cap droplet geometry with apparent contact angle θapp  dictates 

that the equilibrium footprint radius, which corresponds to Rs  
in our model, must equal 

     Rs =
3Vd 0

π (2−3cosθapp + cos
3θapp )

"

#
$
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'
'

1/3

sinθapp        (2) 

If the nanoporous layer is permeable enough and the capillary 
pressure for the layer is high enough, the region of the porous 

layer that is filled with liquid will continue to expand beyond 
the contact line of the droplet. As discussed above, this 
circumstance, depicted in Fig. 1e, is referred to as hemi-
spreading [27].   

The spreading sequence depicted in Fig. 1 is consistent 
with that observed on thin nanostructured layers on metal 
substrates we tested.  Postulated behavior for the model 
developed here is based on such experimental observations.   A 
basic premise adopted here is that the flow in the nanoporous 
layer is driven by a pressure field that is determined from a 
basic transport equation. The proposed model postulates that: 

(i) The droplet exhibits axisymmetric spreading, although 
spreading of real droplets may deviate significantly from such 
symmetry.  Spreading in our experimental studies typically is 
close to radially symmetric, with stronger deviation in the later 
stages.  Also, the transport is idealized as being quasi-steady in 
the following sense: It is postulated that at a given spread 

   
 
                Figure 1.  Droplet spreading process. 
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radius, a pressure field is established which is equivalent to that 
for steady transport of liquid to the outer perimeter of the liquid 
filled region of the porous layer. As the spread radius increases, 
the pressure field is presumed to adjust rapidly to velocity and 
mass flow changes to sustain the equilibrium pressure field, and 
once the pressure field is known, the resulting flow quantities 
and motion of the liquid can be computed from it. 

(ii) When the droplet first touches the structured surface, the 
capillary pressure difference draws liquid first across the 
thickness of the thin nanoporous layer, which takes a very short 
time, tp . 

(iii) Capillary pressure in the layer then drives liquid flow 
radially in the porous layer. 

(iv) The upper droplet spreads over the portion of the layer 
already filled with liquid.  The apparent contact angle on this 
composite surface is less than that for the liquid on the dry 
surface.  The contact angle would have to increase for droplet 
contact line to move beyond the radial extent of the liquid-
occupied portion of the nanoporous layer.  The resulting change 
in curvature would produce a local rise in liquid pressure that 
would drive liquid away from the contact line.  This tends to 
resist the contact line extending beyond the leading edge of the 
liquid filled nanostructured layer.  It is expected, however, that 
the contact line could move beyond it if the droplet fluid 
momentum and/or stagnation pressure are large enough. 

(v) Based on the argument in (iv), the upper droplet can be 
expected initially to spread within the confines of the liquid 
saturated portion of the nanostructured layer below, for low 
impingement velocities and Weber numbers. 

To model the spreading liquid within the nanostructured 
layer, we considered it to be flow in a porous medium that 
obeys Darcy’s Law, indicating that the Darcy velocities in the r 
and z direction are  

vr = −
κ
µl

∂P
∂r
#

$
%

&

'
( ,  vz = −

κ
µl

∂P
∂z
#

$
%

&

'
(   (3) 

and for radial flow in a porous nanostructured layer of 
thickness b: 

  !mr = −
(2πrb)κ

ν l

∂P
∂r
#

$
%

&

'
(     (4) 

Here, we do not invoke modifications similar to Brinkman’s 
[29] model to account for possible inertia term effects because 
we are specifically interested in nanoporous low-permeability 
structures in which inertia effects are expected to be negligible. 
The flow under the droplet can be modeled as 2-D flow in the 
porous layer with appropriate pressure boundary conditions.  
However, for reasons discussed below, a 1-D model was 
adopted here, which is consistent with the physics and is more 
straightforward to handle mathematically. 

For an annular control volume of liquid completely filling 
the nanostructured layer under the droplet, if the pressure field 

is unchanging with time, the conservation of mass requirement 
in the control volume can be stated as 

1
r
d
dr
r dP
dr

!

"
#

$

%
&

!

"
##

$

%
&&−
2
b2
P − Pd( ) = 0   (5) 

In this 1-D model, P  is the mean pressure in the porous layer 
at location r, and the first term on the left represents the 
difference in radial Darcy flow across the control volume.  The 
second term on the left represents Darcy flow from the upper 
droplet into the porous medium driven by the difference 
between the local pressure in the medium P  and the droplet 
internal pressure Pd .  This flow travels a mean difference b/2 
into the porous nanostructured layer.  The left side of Eq. (5) 
can be reorganized by executing the differentiation to yield 

d 2P
dr2

+
1
r
!

"
#
$

%
&
dP
dr

−
2
b2
P − Pd( ) = 0    (6) 

To predict the pressure distribution, this equation must be 
solved with appropriate boundary conditions.  Physically, it is 
clear that the following conditions must hold: 

dP
dr

= 0 at r = 0,     (7a) 

P = Pa −ΔPcap at r = R       (7b) 
In a typical situation of interest here, r values and R (the 

spread extent of the droplet) are on the order of a centimeter or 
two (~0.02 m), whereas the thickness of the nanostructured 
layer is several orders of magnitude thinner, with b ~ 1 µm.  
Because the nanostructured layer is so thin, the mass transport 
due to pressure differences between the droplet and the layer 
pores will be very fast, and the liquid in the pores will quickly 
establish pressure equilibrium with the droplet interior.  This 
indicates that two different solutions of the above equation exist 
in two different region of the porous layer.  In the equilibrium 
layer far from the contact line of the upper droplet (r << R), the 
solution is simply P = Pd .  In the region close to r = R, P  will 

vary between P = Pd  and the value specified by condition (7b): 

P = Pa −ΔPcap at r = R.  This is depicted in Fig. 2.   
 

 
Figure 2.  Synchronous spreading regions. 
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Note that this implies that the new fluid added to the 
nanostructured layer comes primarily from the region of the 
upper droplet near the contact line. 

To solve for the pressure field in the outer near–contact-
line region, we define  ⌣

P = Pd − P .      (8) 

 
⌣r = R− r

b     (9) 
Using the above relations and the basic rules of differentiation 
to reorganize in terms of 

⌣
P  and ⌣r , Eq. (6) converts to 

d 2
⌣
P

d⌣r 2
−

b / R
1−b⌣r / R
"

#
$

%

&
'
d
⌣
P
d⌣r

− 2
⌣
P = 0    (10) 

Since here b / R  << 1, the second term is neglected, reducing 
the equation to 

d 2
⌣
P

d⌣r 2
− 2
⌣
P = 0      (11) 

The boundary conditions are dictated by matching the inner 
solution (

⌣
P = Pd −P = 0 ) as r̂→∞ , and matching boundary 

condition (7b).  In terms of r̂  and 
⌣
P  these become: 

at ⌣r = 0 : 
⌣
P = Pd +ΔPcap −Pa   (12a) 

as ⌣r→∞ : 
⌣
P = 0     (12b) 

It is straightforward to show that the solution of Eq. (11) with 
boundary conditions (12a&b) is 

 
⌣
P = (Pd +ΔPcap − Pa )e

− 2 ⌣r    (13) 
For water droplets on the order of 1 mm in radius, the capillary 
pressure difference across the interface is small compared to 
atmospheric pressure so Pd ≅ Pa .   Neglecting the difference 
and taking Pd = Pa , and reorganizing in terms of physical 
variables, Eq. (13) reduces to 
 Pd −P = ΔPcape

− 2 (R−r )/b    (14) 
Using the mean pressure distribution predicted for the 
nanoporous layer, the mass flow rate delivered to the outer edge 
of the liquid-filled layer is computed from the Darcy relations 
(3) for 1-D flow evaluated at r = R: 

 !mR = −
(2πrb)κ

ν l

dP
dr
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    (15) 

Differentiating (14) to get the pressure derivative, substituting 
into (15) and setting r = R yields 
 

!mR =
2π 2RκΔPcap

ν l
   (16) 

The rate of mass delivery to r = R must equal the mass 
growth rate of the liquid in the nanostructured layer: 

 !mR =
d
dt

πR2bερl( ) = 2πRbερl dRdt    (17) 

where ε  is the porosity of the layer.  Equating the right sides of 
Eqs. (16) and (17) and solving for dR/dt yields 

 
dR
dt

=
2κΔPcap
bερlν l   

 (18) 

Integrating the above equation yields 

 dR
b

R

∫ =
2κΔPcap
bερlν l

dt
tp

t

∫    

 R = b+
2κΔPcap
bερlν l

t − t p( )    (19) 

Since b << R and t  >> tp for most conditions of interest, the 
result can be simplified by neglecting b and tp: 

 R =
2κΔPcap
bερlν l

t      (20) 

Thus, the model predicts a linear variation of R with t for the 
initial synchronous stage of the spreading process with the 
droplet contact line closely following the edge of the liquid 
filled nanoporous layer under the droplet. 

This model also predicts the variation of the mass flux 
from the droplet to the nanostructured layer.  Considering an 
annular differential surface with area 2πrdr  at the top of the 
nanostructured layer (z = b), Darcy’s law, as used here, requires 
that the radial mass flow rate at any r location is given by 

 !mr = −
(2πrb)κ

ν l

dP
dr

"

#
$

%

&
'     (21) 

Using Eq. (14) to evaluate dP / dr  yields 

 !mr = −
2π 2κ
ν l

re− 2 (R−r )/b     (22) 

If  !!!mz=b  is the mass flux of liquid through the annular 
differential surface at radial location r through area 2πrdr , 
conservation of mass in the layer requires that 
 !!!mz=b(2πrdr) = (d !mr / dr)dr    (23) 
which simplifies to 

 !!!mz=b =
1
2πr

d !mr

dr
"

#
$

%

&
'     (24) 

Differentiating Eq. (22) to evaluate the derivative in (24), and 
neglecting terms of order b / R  compared to terms of order 
r / R , Eq. (24) converts to the form 

 ! !!mz=b = −
2κΔPcap
ν lb

e− 2 (R−r )/b     (25) 

This 1-D relation, plotted in dimensionless form in Fig. 3, 
predicts that the flux of liquid into the layer is zero except in 
the region close to the contact line ( R− r < 3b ). 

As noted above, the flow in the nanoporous layer can also 
be modeled as 2-D Darcy flow by solving the Laplace equation 
for the pressure field with pressure boundary conditions 
P = Pa −ΔPcap at r = R , P = Pd  at  z = b, and ∂P /∂r = 0 at r = 
0, and at z = 0.  The solution for the pressure field can be 
obtained using separation of variables.  Taking Pd ≅ Pa , and 
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using Darcy’s law with the resulting pressure field relation, the 
variation of the mass flux at the interface between the upper 
droplet and the nanoporous layer (z = b) is determined to be 

!!!mz=b = −
2ΔPcapκ
ν lb

#

$
%%

&

'
((
e−π (R−r )/2b

1− e−π (R−r )/b
   (26) 

This predicted variation of the mass flux into the layer is also 
plotted in Fig. 3.  It can be seen in Fig. 3 that the 2-D Darcy 
flow model and the 1-D model are virtually identical away 
from the contact line region.  However, the 2-D Darcy solution 
predicts that the mass flux from the droplet into the layer 
increases without bound as r→ R .  This singularity is a 
consequence of the discontinuity in the pressure boundary 
condition at the contact line location (r,z) = (R,b) and can be 
similarly seen in the analogous heat transfer problem (see the 
discussion in Gebhart [30]).  Here, the discontinuous boundary 
pressure and the resulting infinite mass flux are not expected to 
be accurate predictions for a real system.   The 1-D model 
therefore appears to be a better representation of the physics for 
this system, predicting a linear variation of R with time for the 
initial synchronous stage of the spreading process. 

      
Figure 3.  Dimensionless mass flux variation at the 
droplet/layer boundary.  
 
Modeling of Hemi-Spreading 
As discussed above, thermodynamic analysis of the upper 
droplet suggests that the linear variation of R with t will 
continue until the upper droplet contact line reaches the spread 
radius and apparent contact angle that minimizes its free 
energy.  Further spreading of the upper droplet beyond that 
point is not thermodynamically favored.  We therefore model 
the upper droplet as stopping its spread at the radius where it 
minimizes its free energy and achieves its equilibrium apparent 
contact angle.  However, growth of the liquid-filled region of 
the porous layer can continue beyond that point, leading to a 
hemi-spreading process.  

Here, the wicking spread of liquid in the porous layer 
beyond the upper droplet contact line is modeled in the same 
quasi-static manner as for the porous region flow under the 
droplet.   As depicted in Fig. 4, flow in the porous layer beyond 
the droplet is driven by the difference in pressure between the 

edge of the upper droplet and the capillary reduced pressure at 
the edge of the growing liquid filled porous layer.  Liquid 
enters the extended portion of the liquid filled layer near the 
droplet contact line and as additional mass is added to the 
extended region of liquid-filled nanoporous layer, the extended 
region grows.  The governing equation for this process is the 
Darcy transport equation discussed above with only the term 
that represents Darcy transport in the radial direction. 

1
r
d
dr

r dP
dr
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&
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#

$

%
&= 0     (27) 

Figure 4.  Droplet feeding hemi-spreading. 
 

Equation (27) is solved in the extended region of the 
nanoporous layer filled with liquid from the contact line of the 
droplet to the furthest extent of the liquid filled region in the 
nanoporous layer (from Rs to R in Fig. 4).  The pressure 
boundary conditions are: 

at r = Rs : P = Pd     (28a) 

at r = R: P = Pa −ΔPcap    (28b) 

Here again we take Pa ≅ Pd .  The solution to Eq. (27) for the 
pressure field satisfying the boundary conditions (28a&b) is  

P − Pd = −ΔPcap
ln(r / Rs )
ln(R / Rs )

    (29) 

Darcy’s law (3) dictates that, given this pressure field, the mass 
flow rate at r = R is 

 !mR =
(2πb)κ
ν l

!

"
#

$

%
&

ΔPcap
ln(R / Rs )

    (30) 

and since the rate of mass delivery to r = R must equal the mass 
growth rate of the liquid in the nanostructured layer as specified 
from the conservation of mass relation (17), equating the rights 
sides of Eqs. (30) and (17) yields 

2πRbερl
dR
dt

=
2πbκ
ν l

!

"
#

$

%
&

ΔPcap
ln(R / Rs )

      (31) 

Separating variables, and integrating this differential equation 
from (ts,Rs) to (t,R) yields the following implicit relation for 
R(t) in the hemi-spreading regime 

      R
2

2
ln(R / Rs )−

1
4
R2 − Rs

2( ) =
κΔPcap
ερlν l

#

$
%

&

'
((t − ts )            (32) 

The net outcome of this model analysis is the prediction that 
there are two regimes in the spreading process: 
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        R =
2κΔPcap
bερlν l

"

#
$$

%

&
''t                                for R ≤ Rs    (33a) 

  R
2

2
ln(R / Rs )−

1
4
R2 − Rs

2( ) =
κΔPcap
ερlν l

#

$
%

&

'
((t − ts )   for R > Rs   (33b) 

Note that in Eq. (33a), factor in parentheses multiplying t is 
the characteristic velocity associated with the spread of the 
upper droplet liquid over the surface.  In that sense it can be 
defined as the wickability ω *  for this process 

 ω*=
2κΔPcap
bερlν l

     (34) 

Note here that the transition occurs at R = Rs , where Rs is the 
equilibrium radius for a spherical cap with contact angle θapp  
(on the liquid filled nanostructured layer) having the same 
volume as the spherical deposited droplet.  As argued above, 
separation of the surface layer liquid penetration front from the 
upper droplet contact line is postulated to occur approximately 
at R = Rs.  The spreading curve relations (33a&b) can also be 
cast in non-dimensional form by normalizing R and t with Rs 
and ts 
 t̂ = t / ts , R̂ = R / Rs    (35) 
Substituting into Eqs. (33a&b) and using the fact that Eq. (33a) 
requires that Rs = 2κΔPcap / bερlν l( )ts , yields  

R̂ = t̂   for R̂  ≤ 1    (36a) 

      

R̂2

2
ln(R̂)− 1

4
R̂2 −1( ) = b

Rs

"

#
$

%

&
'
t̂ −1
2

      for R̂  > 1 (36b) 

Note that this condenses the spreading relations into a universal 
curve for the synchronous early spreading regime and a 
collection of curves for different b / Rs  ratios in the hemi-
spreading regime.  An obvious question at this point is: does 
spreading of water droplets on a thin, nanostructured, 
superhydrophilic layer on a solid substrate exhibit behavior 
consistent with this predicted two-regime model?  Results of 
spreading experiments are used to explore this question in the 
next section. 
 
COMPARISON OF MODEL PREDICTIONS  
WITH EXPERIMENTAL DATA 

To assess the model described in the previous section, we 
conducted droplet deposition experiments in which a water 
droplet was deposited on a thin ZnO nanostructured surface on 
a copper substrate. The development of this surface uses a 
process known as hydrothermal synthesis. This process is 
described below and in more detail in Padilla [31] and Padilla 
and Carey [18]: 

(i) Surface preparation involves: polishing the copper surface 
to achieve near-uniformity in surface smoothness and 
cleaning the copper surface using a sonication bath. 
(ii) ZnO nanoparticles measuring 6nm in diameter are evenly 

deposited on the clean surface and this is annealed in a dry 
oven at 150-160°C. 
(iii) Once annealed, the surface is cooled and submerged, 
coated side facing down, in a liquid growth solution (details 
in [18,31]) and placed in a 90°C oven for 8 hours. 
(iv) Once removed and cooled, the surface is desorbed on a 
heating plate at 275°C for an hour to get rid of any liquid or 
substances adsorbed on to the surface. 

An electron microscope image of the resulting surface 
morphology is shown in Fig. 5.  The desorption process was 
repeated prior to all experimental tests in order desorb any 
adsorbed molecular species on the surface between 
experiments. Each time we do this pre-experiment prep, the 
resulting surface’s intrinsic wetting can vary slightly, so we 
treat the surface after being prepped this way as a distinct 
surface.  In our results we refer to a “prep 1” and “prep 2” 
surfaces, which designate two surfaces with the same 
nanomorphology, but slightly different intrinsic wetting.  When 
comparing parametric changes in the spreading process, we 
only compare experiments done on an identical morphology 
from the same prep process. The specific surface prep is noted 
on the experimental data presented in the next section. 

In the spreading experiments, a measured volume of liquid 
was deposited on a nominally horizontal nanostructured surface 
of this type and the resulting spreading process was recorded 
using a high-speed video camera.  Frames from a high-speed 
video of a droplet spreading experiment are shown in Fig. 6.   

Figure 7 shows two frames of a digital video of the 
spreading process for a 2 µl droplet (1.6 mm diameter before 

   
Figure 5.  Tightly packed pillar structure on copper surface 
enhanced with ZnO nanostructures (6nm seeding particles, 
grown in solution for 8 hours) imaged with SEM microscope.    
       
deposition) spreading at room temperature. These frames 
illustrate the appearance of the droplet before (a) and after (b) 
reaching the separation point ( ts , Rs ) where the upper droplet 
stops spreading and the liquid continues to penetrate radially 
within the nanostructured layer.  This illustrates the behavior 
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leading to the onset of hemi-spreading that leads to the two 
different regimes in the model analysis.   

                  
Figure 6.  High-speed video frames for a 2µl water droplet 
spreading on copper surface with a ZnO nanostructured layer. 
 

 
Figure 7.  Spreading of a 2µl water droplet on copper surface 
with a ZnO nanostructured layer. (a) initial spreading at t = 
0.014 sec (b) hemi-spreading at t = 4 sec. 
 

The image processing software ImagJ was used to extract 
contact line and nanolayer liquid front position data from 
frames of the digital video. To determine the variation of the 
mean radius of the spread droplet with time, the wetted area 
was divided by π and the square root of the result was taken to 
be the mean radius of the spread droplet at that point in the 
spreading process.  The corresponding time was computed from 
the frame number relative to the start, and the known frame rate 
of the video camera. The frame rate for these videos was 1000 
frames per second, leading to an uncertainty of roughly 
±0.0005 seconds, as movement between frames wasn’t 
captured. While this time interval is very small, it does lead to 
more uncertainty in the early stage data when movement is 
occurring on a much smaller time scale. The fast, synchronous 
stage spreading can lead to ±10% uncertainty in determination 
of the time, while later stage spreading causes roughly ±1% 
uncertainty. Therefore, as the droplet spreading slows, the 
uncertainty decreases. Uncertainty in radius is a result of image 
processing. Wetted area from photos was measured with a 
known scale ratio of 30 pixels/mm. The contact line and 
wicking limit radius measurements were determined to ±2-3 

pixels, which translates to ±2%-3% uncertainty in the radius 
measurements. An example of the resulting R(t) data is shown 
in Fig. 8 for spreading of a 2 µl droplet deposited on an 
unheated ZnO nanostructured surface like that shown in Fig. 5 
at room temperature.   

 
 
Figure 8.  Experimentally determined variation of liquid front 
radius with time as a 2 µl droplet spreads on a nanostructured 
ZnO surface.  

Figure 8 is a log-log plot to clearly depict the very early 
time variation during which the droplet rapidly spreads to the 
radius of a few millimeters in less than 0.02 seconds.  It should 
be noted that the R(t) variation of the data in this figure clearly 
reflect the two regimes represented in the model described 
above.  At early times, the variation of R with t is close to 
linear, corresponding to the synchronous solution for which the 
droplet contact line expands radially in tandem with the liquid 
front in the nanoporous layer.  The data in Fig. 8 also show a 
clear transition to the slower expansion of the liquid front 
beyond the contact line of the upper droplet after the upper 
droplet stops expanding.  This transition, at about t = 0.011 s, 
corresponds approximately to the time when the upper droplet 
visually is observed to stop expanding. 

If the mean permeability, capillary pressure characteristics, 
porosity and layer thickness of the nanostructured layer are 
known, they, together with water properties, can be used to 
compute a prediction of R(t) by the model developed in this 
study. Determining accurate values of all the morphology 
parameters in the model equations would require an extensive 
micrographic analysis for the random nanostructure used in our 
experiments.  However, here we took a more direct approach to 
evaluating the model.  The transition point ( ts , Rs ) is a unique 
point in the R(t) variation at the end of the linear first stage that 
we can determine directly from our experimental results.  It is 
clear from the model solution that if ts  and Rs  are known, the 
wickability ω *  defined by Eq. (34) can be computed from Eq. 
(33a) as 

 ω*=
2κΔPcap
bερlν l

=
Rs

ts
   (37)  



 9 Copyright © 2017 by ASME 

To determine this key transition point ( ts , Rs ), we 
iteratively determined the pair of Rs  and ts  values that 
provided the best fit of the normalized R / Rs  and t / ts  video 
frame data to the linear universal curve and transition point 
predicted by equations (36a&b).  As shown in Fig. 9, for the 
data shown in Fig. 8 (using surface prep 1), Rs  = 3.06 mm and 
ts  = 0.0090s provide a best fit.  Note that once this is done, the 
value of b/ Rs  that provides the best fit of Eq. (36b) to the data 
in the hemi-spreading region indicates the b/ Rs  ratio that 
characterizes this nanostructured surface.  Since Rs  = 3.06 mm, 
the best fit for b/ Rs = 0.0016 implies that the mean surface layer 
thickness b is 4.9 microns.  We also found that the ts  values 
determined by the model fitting method agreed well with the 
time in our video recording where hemi-spreading was 
observed to begin.   

(a) 

 
(b) 

 
Figure  9.  Comparison of droplet spread data with the model 
predicted variation of R̂  = R/ Rs  with t̂  = t/ ts for surface prep. 
1: (a) linear plot, (b) log-log-plot.  

The fitting process to determine ( ts , Rs ) was also applied 
to droplet spread data obtained for another experiment, using 
data from surface prep 2, in which both 2 µl and 4 µl droplets 
were deposited on the surface.  These data are shown in Fig. 10.  
For the 2 µl droplet on this surface, a best fit implied an Rs  
value of 2.37 mm, whereas for the 3 µl droplet, the results 
indicate an Rs  value of 2.73 mm.  Note that the postulated 

variation of Rs  proportional to Vd 0
1/3  indicates that Rs  for this 3 

µl droplet case should be about 14% higher than for the 2 µl 
droplet experiment.  The determined Rs  value of 2.7 is about 
15% higher, which is consistent with the model prediction.  
Overall our comparisons indicate that with appropriately 
specified ( ts , Rs ) values, the model predictions agree well with 
the nanostructured surface spreading data in both the regimes 
considered in the model analysis, and the model and data 
exhibit trends that are consistent with the postulated behavior in 
our model. 

 
Figure  10.  Comparison of droplet spread data with the model 
predicted variation of R̂  = R/ Rs  with t̂  = t/ ts for surface prep 
2 with 2 µl droplet and surface prep 2 with 3 µl droplet.  
 
IMPLICATIONS FOR ENHANCING  
DROPLET VAPORIZATION OR BOILING 
The generally good agreement between the experimentally 
determined R(t) spreading data and the model prediction 
suggests that the idealizations in the model may be appropriate 
for this type of process.  Our motivation in developing the 
model is to better understand how the morphology and material 
of the nanostructured layer can be chosen to maximize the heat 
transfer performance associated with droplet spread and 
evaporation on the surface.   

For vaporizing of spreading droplets, two strategies tend to 
enhance heat transfer.  One is to spread the droplet faster.  The 
model solution indicates that faster spreading of the upper 
droplet results when the wickability ω*= 2κΔPcap / (bερlν l ) is 
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larger.  The definition of wickability here indicates that, if other 
factors are held constant, spreading speed is enhanced when: 

(1) the permeability κ  is increased 
(2) the porosity ε  is decreased 
(3) the capillary pressure difference ΔPcap  across the interface 

in the pores of the nanostructured layer is increased.  
(4) the viscosity of the liquid µl = ρlν l  is lower 

Note that changing the geometry of the nanoporous layer may 
change more than one of these parameters.  And, although 
water is usually the fluid of interest, its liquid viscosity varies 
substantially with temperature, and, therefore, changing the 
temperature can strongly affect the wickability. The key 
prediction of the model analysis presented here is that some of 
the parameters affecting wickability may be interdependent, but 
the overall strategy to enhance spreading speed must be to 
maximize the combination of these parameters in 
ω*= 2κΔPcap / (bερlν l ) .   

The second strategy to enhance droplet evaporation heat 
transfer is to enhance the footprint area of the spread droplet.  
For the thin nanostructred layers considered in this study, the 
high wickability spreads a droplet over an extensive area in a 
time that is very short compared to the evaporation time.  In 
effect, the upper droplet spreads first to it maximum extent Rs , 
followed by evaporation of the resulting thin upper droplet.  
Furthermore, the extremely thin nanoporous layers considered 
here will evaporate very little liquid compared to the content of 
the upper droplet, and virtually all the liquid evaporation occurs 
at the upper droplet liquid-vapor interface.  

Use of a nanoporous layer to increase the maximum 
footprint area of the spread droplet increases the area of direct 
contact heat transfer between the spread droplet and the heated 
surface, and, for fixed droplet volume, it reduces the heat 
conduction path length from the surface to the liquid-vapor 
interface. The net result is that droplet evaporation time te  is a 

very strong function of maximum spread area Asl ,0 = πRs
2 , or 

equivalently, maximum mean spread radius Rs . This is 
reflected, for example, in the droplet evaporation model 
prediction of Kunkle and Carey [32]:  

       te =
3γVd0

2

2Asl ,0
2

ρlhlv
kl (Tw −Ti )
"

#
$

%

&
'=

3γVd0
2

2π 2Rs
4

ρlhlv
kl (Tw −Ti )
"

#
$

%

&
'     (38) 

which indicates that for a given initial droplet volume Vd0 , 
evaporation time for a spherical cap droplet with fixed contact 
angle is inversely proportional to maximum droplet footprint 
area squared ( Asl ,0

2 ), or equivalently, inversely proportional to 

Rs
4 . Experimental data were found to agree well with 

predications of this relation with the shape-factor-related 
constant γ  set to one [32].  These parametric trends clearly 
indicate that even surface modifications that moderately 
enhance the upper droplet maximum spread area can 
dramatically reduce the droplet evaporation time.  For spray 

cooling, reducing droplet evaporation time te  can be attractive 
because it allows delivery and evaporation of more droplets per 
unit time to the surface, resulting in a higher rate of evaporative 
cooling.   

The model analysis developed here also indicates that for 
any specified droplet volume, smaller contact angle for the 
spread droplet results in greater spread area.  The Cassie-Baxter 
model in Eq. (1) can be used to predict the apparent contact 
angle for the upper droplet if the intrinsic contact angle for the 
nanoporous layer solid material, θE  and the fraction of the top 
surface of the layer that is solid, φs , are known.  If we accept 
this as a model for the apparent contact angle, Eq. (1) dictates 
that minimizing θapp  requires making φs  as large as possible 

and making θE  as close to zero as possible.   

   
Figure 11.  Wicked flow from a capillary tube onto a 
nanoporous layer. 
 

Our analysis of enhanced droplet spreading on 
nanostructured surfaces also connects to the heat transfer issues 
associated with pool boiling critical heat flux (CHF) conditions. 
In a recent experimental study, Rahman, et al. [6] presented 
results indicating that enhancement of pool boiling CHF on 
heated micro and nano porous surfaces correlates with the 
magnitude of a wickability parameter.  The study done by 
Rahman, et al. [6] relates wickability to a volume flux, !!!V0 , 
which is experimentally determined in their study wherein they 
initiated deposition of water onto a hydrophilic microstructured 
surface from a tube by raising a surface until it contacted a 
pendent liquid at the bottom of the tube. The experimental 
setup for this study is shown in Fig. 11.  Video recordings of 
these experiments were analyzed to measure the volume rate, 
(dV / dt)0 , at which liquid spreads over the surface per unit 
area at the beginning of the process. Rahman, et al. [6] define 
their wickability metric as the volume flux per unit area: 

!!!V0 = (1/ Aw )(dV / dt)t=0                 (39)  

where Aw = πR
2 , the wetted area of the droplet, and V is the 

volume of liquid present in the space between the bottom of the 
tube and the top of the microstructure layer (shown in Fig. 11).  
For the initial spreading stage under the end of the capillary 
tube, this volume is represented by:  
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                   V = πR2hgap                 (40)   
Using Eq. (40), we can differentiate to solve for dV / dt , 

   dV / dt = 2πRhgap (dR / dt)   (41) 
We then evaluate the derivative at t = 0, substitute into Eq. (39) 
and rearrange to get an equation for volume flux in terms of the 
rate of change of the radius: 
  !!!V0 = [(2πRhgap / πR

2 )(dR / dt)]t=0 = (2hgap / Rti )(dR / dt)t=0    (42) 

where Rti  is the inner tube radius, which we take to be the 

radius R when t = 0. As Fig. 11 suggests, the gap height hgap  
is 

primarily dictated by the extent to which the pendent liquid 
extends below the end of the tube.  This is expected to scale 
linearly with the inside radius of the tube, which suggests that  
hgap = aRti , where a  is an order-one constant. Using this 
relation allows Eq. (42) to simplify to: 

!!!V0 = 2a(dR / dt)t=0 = 2aω *    (43) 
where we have set (dR / dt)t=0 =ω *  based on the hypothesis 
that we have synchronous spreading of the upper liquid front at 
early times. This relation, derived in a previous section for 
droplet spreading, also applies here. By rearranging Eq. (43), 
we can directly relate the velocity flux rate !!!V0  in the study of 
Rahman, et al. [6] to the wickability, ω *  determined for our 
surfaces as 	  

ω*= !!!V0 / 2a      (44)    
Based on images in the study [6], we estimate a to be in the 
range of 1-2. For comparison, if a value of a = 1 is chosen to 
relate the gap height shown in Fig. 1 to the inner tube radius, 
the reported values from the study of Rahman, et al. [6]  (for 
nanostructured and microstructured surfaces) would result in 
ω *  values of around 1-3 mm/s. For the ultra-thin, 
nanostructured, superhydrophilic surfaces considered in our 
study, our data indicate wicking rates (ω *  values) were on the 
order of 200-300 mm/s, implying that they have a substantially 
stronger capability to enhance droplet spreading and liquid 
wicking transport in boiling processes. 

This model analysis suggests that !!!V0  and ω *  are 
proportional, and the proportionality constant (1/2a) is of order 
one.  This result is significant because, given the definition of 
ω *  from our droplet spreading model, we can write Eq. (44) as  

!!!V0
2a

=ω*=
2κΔPcap
bερlν l

     (45) 

which links !!!V0  and ω *  to the properties of the porous wicking 
structure.  With this relation it is possible to explore how 
changes in permeability, porosity, capillary pressure, and fluid 
properties modify !!!V0 . Additionally, by using the empirical 
relations developed by Rahman, et al. [6], it is possible to 
determine how the changes affect critical heat flux (CHF).  This 
connection can provide an understanding of how parametric 
changes in the nanoporous structure may affect CHF, and it can 

provide a means to develop nanoporous layer designs that 
improve CHF performance. 

CONCLUDING REMARKS 
Our experimental data and observations, together with the 

model framework described here, support the conclusion that 
droplet spreading on our highly-wicking, nanostructured 
surfaces is characterized by two regimes. Early in the process, 
the very rapid, synchronized spreading of liquid in the upper 
droplet and in the porous layer is facilitated by localized liquid 
flow from the upper droplet into the porous layer near the upper 
droplet contact line.  At a specific mean footprint radius, dictated 
by the apparent contact angle of the upper droplet and the 
volume of the deposited droplet, the upper droplet spreading 
essentially halts, and hemi-spreading continues the flow of liquid 
from the upper droplet contact line into the porous layer.   

The predictions of the model framework discussed here 
agree well with these trends in the observed spreading 
behavior.  In particular, the model provides insight into the 
mechanism of very rapid spreading early in the process, and we 
have demonstrated how a wickability parameter can be 
determined from measurement of the time and mean spread 
radius at the regime transition point.  The model also indicates 
that for the surfaces tested in this study, the high wickability 
associated with this early stage is a consequence of the 
extremely thin nanoporous layer and the high capillary pressure 
difference generated in its very small interstitial spaces. The 
early rapid, synchronous spreading process can quickly spread 
the droplet to a large footprint area, which can strongly enhance 
the subsequent droplet evaporation heat transfer rate. 

It should be noted, that the model analysis described here 
and our experiments correspond to low Weber number droplet 
spreading dominated by capillary and viscous forces on an 
ultrathin, nanostructured, hydrophilic layer on a solid substrate. 
The model is not designed to apply to vaporization on thicker 
porous layers, low permeability, low capillary pressure porous 
layers, or for deposition and spreading at higher impact Weber 
numbers. 

As discussed in the previous section, the model suggests 
specific strategies for increasing surface wickability and the 
extent of liquid spreading on a solid surface as means of 
enhancing droplet evaporation heat transfer. Our results, 
together with those from other studies of wickability boiling 
enhancement, suggest that these same nanostructure parameter 
strategies also are likely to enhance boiling heat transfer. 
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